Session 1: Theoretical Machine Learning
- Unlabeled sample compression schemes and corner peelings for ample and maximum classes
Jérémie Chalopin (Equipe DALGO – Pôle Calcul) - 
Quantum Bandits
Balthazar Casalé (Equipe CANA/QARMA – Pôle Calcul/SD) - 
Learning fast operators for machine learningValentin Emiya (Equipe QARMA – Pôle SD)
 - 
Learning meaningful representations of life
Paul Villoutreix (Equipe QARMA – Pôle SD) 
Session 2: Applications of Machine Learning
- 
Zhongliang Li (Equipe PECASE – Pôle ACS)Diagnosis and prognosis for fuel cell systems using machine learning tools
 - An Advanced Arrhythmia Recognition Methodology Based on R-waves Time-Series Derivatives and Benchmarking Machine-Learning Algorithms
Youssef Trardi (Equipe PECASE – Pôle ACS) - 
Machine learning of human behaviour for human-machine interactionsMagalie Ochs (Equipe R2I – Pôle SD)
 - 
IoT Data Imputation with Incremental Multiple Linear RegressionPeng Tao (Equipe DIAMS – Pôle SD)
 
Session 3: Deep Learning
- 
Deep Learning based Image Recognition
Ronan Sicre (Equipe QARMA – Pôle SD) - Utilisation des dépendances dans la Classification relation issu de textes par apprentissage profond
Sébastien Fournier (Equipe R2I – Pôle SD) - 
Neural representations of dialogical history improve upcoming turn acoustic parameters predictionFuscone Simone (Equipe TALEP – Pôle SD)
 - 
Weakly Supervised Supersense Induction for French NounsAlexis Nasr (Equipe TALEP – Pôle SD)