Session 1: Theoretical Machine Learning
- Unlabeled sample compression schemes and corner peelings for ample and maximum classes
Jérémie Chalopin (Equipe DALGO – Pôle Calcul) -
Quantum Bandits
Balthazar Casalé (Equipe CANA/QARMA – Pôle Calcul/SD) -
Learning fast operators for machine learningValentin Emiya (Equipe QARMA – Pôle SD)
-
Learning meaningful representations of life
Paul Villoutreix (Equipe QARMA – Pôle SD)
Session 2: Applications of Machine Learning
-
Diagnosis and prognosis for fuel cell systems using machine learning tools
- An Advanced Arrhythmia Recognition Methodology Based on R-waves Time-Series Derivatives and Benchmarking Machine-Learning Algorithms
Youssef Trardi (Equipe PECASE – Pôle ACS) -
Machine learning of human behaviour for human-machine interactionsMagalie Ochs (Equipe R2I – Pôle SD)
-
IoT Data Imputation with Incremental Multiple Linear RegressionPeng Tao (Equipe DIAMS – Pôle SD)
Session 3: Deep Learning
-
Deep Learning based Image Recognition
Ronan Sicre (Equipe QARMA – Pôle SD) - Utilisation des dépendances dans la Classification relation issu de textes par apprentissage profond
Sébastien Fournier (Equipe R2I – Pôle SD) -
Neural representations of dialogical history improve upcoming turn acoustic parameters predictionFuscone Simone (Equipe TALEP – Pôle SD)
-
Weakly Supervised Supersense Induction for French NounsAlexis Nasr (Equipe TALEP – Pôle SD)